Thursday, 27 July 2017

Moving Average And Faltung


29 September, 2013 Gleitender Durchschnitt durch Faltung Was ist gleitender Durchschnitt und was ist es gut für Wie ist das Bewegen der Mittelung durch die Faltung gemacht Bewegen Durchschnitt ist eine einfache Operation verwendet in der Regel zu unterdrücken Rauschen eines Signals: Wir setzen den Wert jedes Punktes auf die Durchschnitt der Werte in seiner Nachbarschaft. Nach einer Formel: Hier ist x die Eingabe und y ist das Ausgangssignal, während die Größe des Fensters w ist, soll ungerade sein. Die obige Formel beschreibt eine symmetrische Operation: Die Proben werden von beiden Seiten des tatsächlichen Punktes genommen. Unten ist ein echtes Leben Beispiel. Der Punkt, an dem das Fenster gelegt wird, ist rot. Werte außerhalb von x sollen Nullen sein: Um herumzuspielen und die Effekte des gleitenden Durchschnitts zu sehen, werfen Sie einen Blick auf diese interaktive Demonstration. Wie man es durch Faltung macht Wie Sie vielleicht erkannt haben, ist die Berechnung des einfachen gleitenden Durchschnitts ähnlich der Faltung: In beiden Fällen wird ein Fenster entlang des Signals verschoben und die Elemente im Fenster werden zusammengefasst. Also, versuch es, das Gleiche zu tun, indem du eine Faltung benutzt. Verwenden Sie die folgenden Parameter: Die gewünschte Ausgabe ist: Als erster Ansatz, versuchen wir, was wir bekommen, indem wir das x-Signal durch den folgenden k-Kernel falten: Der Ausgang ist genau dreimal größer als der erwartete. Es kann auch gesehen werden, dass die Ausgangswerte die Zusammenfassung der drei Elemente im Fenster sind. Es ist, weil während der Faltung das Fenster verschoben wird, werden alle Elemente in ihm mit einem multipliziert und dann zusammengefasst: yk 1 cdot x 1 cdot x 1 cdot x Um die gewünschten Werte von y zu erhalten. Die Ausgabe wird durch 3 geteilt: Nach einer Formel, die die Teilung einschließt: Aber wäre es nicht optimal, die Teilung während der Faltung zu machen. Hier kommt die Idee, indem sie die Gleichung neu arrangiert: So werden wir den folgenden k Kernel verwenden: Auf diese Weise werden wir Bekomme die gewünschte Ausgabe: Im Allgemeinen: Wenn wir gleitenden Durchschnitt durch Faltung mit einer Fenstergröße von w machen wollen. Wir verwenden den folgenden k Kernel: Eine einfache Funktion, die den gleitenden Durchschnitt macht: Ein Beispiel ist: Mit MATLAB, wie finde ich den 3-tägigen gleitenden Durchschnitt einer bestimmten Spalte einer Matrix und füge den gleitenden Durchschnitt dieser Matrix hinzu Ich versuche, den 3-tägigen gleitenden Durchschnitt von unten nach oben der Matrix zu berechnen. Ich habe meinen Code bereitgestellt: Angesichts der folgenden Matrix a und Maske: Ich habe versucht, den Conv-Befehl zu implementieren, aber ich bekomme einen Fehler. Hier ist der Conv-Befehl, den ich in der 2. Spalte der Matrix a verwendet habe: Die Ausgabe, die ich wünsche, ist in der folgenden Matrix gegeben: Wenn Sie irgendwelche Vorschläge haben, würde ich es sehr schätzen. Vielen Dank Für Spalte 2 von Matrix a, berechne ich den 3-tägigen gleitenden Durchschnitt wie folgt und platziere das Ergebnis in Spalte 4 der Matrix a (ich benannte Matrix a als 39desiredOutput39 nur zur Illustration). Der 3-Tages-Durchschnitt von 17, 14, 11 ist 14 der 3-Tages-Durchschnitt von 14, 11, 8 ist 11 der 3-Tages-Durchschnitt von 11, 8, 5 ist 8 und der 3-Tage-Durchschnitt von 8, 5, 2 ist 5. Es gibt keinen Wert in den unteren 2 Zeilen für die 4. Spalte, da die Berechnung für den 3-tägigen gleitenden Durchschnitt am Anfang beginnt. Die 39valid39 Ausgabe wird nicht angezeigt, bis mindestens 17, 14 und 11. Hoffentlich ist das sinnlich ndash Aaron Jun 12 13 um 1:28 Im Allgemeinen würde es helfen, wenn du den Fehler zeigen würdest. In diesem Fall machst du zwei Dinge falsch: Zuerst muss deine Faltung durch drei geteilt werden (oder die Länge des gleitenden Durchschnitts) Zweitens bemerke die Größe von c. Du kannst nicht einfach in einen. Die typische Art, einen gleitenden Durchschnitt zu bekommen, wäre, dasselbe zu verwenden: aber das sieht nicht so aus, was du willst. Stattdessen sind Sie gezwungen, ein paar Zeilen zu benutzen: Moving Averages: Was sind sie unter den beliebtesten technischen Indikatoren, gleitende Durchschnitte werden verwendet, um die Richtung des aktuellen Trends zu messen. Jede Art von gleitendem Durchschnitt (üblicherweise in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl von vergangenen Datenpunkten berechnet wird. Einmal bestimmt, wird der daraus resultierende Durchschnitt dann auf ein Diagramm aufgetragen, um es den Händlern zu ermöglichen, geglättete Daten zu betrachten, anstatt sich auf die alltäglichen Preisschwankungen zu konzentrieren, die allen Finanzmärkten innewohnen. Die einfachste Form eines gleitenden Durchschnitts, die in geeigneter Weise als ein einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem man das arithmetische Mittel eines gegebenen Satzes von Werten annimmt. Zum Beispiel, um einen grundlegenden 10-Tage gleitenden Durchschnitt zu berechnen, würden Sie die Schlusskurse aus den letzten 10 Tagen addieren und dann das Ergebnis mit 10 teilen. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl der Tage (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Händler einen 50-tägigen Durchschnitt anstatt sehen möchte, würde die gleiche Art von Berechnung gemacht werden, aber es würde die Preise in den letzten 50 Tagen enthalten. Der daraus resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung davon zu vermitteln, wie ein Vermögenswert in Bezug auf die letzten 10 Tage festgesetzt wird. Vielleicht fragen Sie sich, warum technische Händler dieses Werkzeug einen gleitenden Durchschnitt nennen und nicht nur ein normales Mittel. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Set gelöscht werden müssen und neue Datenpunkte kommen müssen, um sie zu ersetzen. Damit wird der Datensatz ständig auf neue Daten übertragen, sobald er verfügbar ist. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. In Abbildung 2, sobald der neue Wert von 5 dem Satz hinzugefügt wird, bewegt sich der rote Kasten (der die letzten 10 Datenpunkte repräsentiert) nach rechts und der letzte Wert von 15 wird aus der Berechnung gelöscht. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt der Datensatzabnahme, was es tut, in diesem Fall von 11 bis 10 zu sehen. Was verschieben die Durchschnitte aussehen Einmal die Werte der MA wurden berechnet, sie werden auf ein Diagramm geplottet und dann verbunden, um eine gleitende durchschnittliche Linie zu erzeugen. Diese geschwungenen Linien sind auf den Charts der technischen Händler üblich, aber wie sie verwendet werden, kann drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu jedem Diagramm hinzuzufügen, indem Sie die Anzahl der in der Berechnung verwendeten Zeiträume anpassen. Diese geschwungenen Linien mögen anfangs ablenkend oder verwirrend erscheinen, aber sie werden sich daran gewöhnt, wie es die Zeit verläuft. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, führen Sie gut eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von dem zuvor erwähnten einfachen gleitenden Durchschnitt unterscheidet. Der einfache gleitende Durchschnitt ist bei den Händlern sehr beliebt, aber wie alle technischen Indikatoren hat er seine Kritiker. Viele Einzelpersonen argumentieren, dass die Nützlichkeit des SMA begrenzt ist, weil jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die jüngsten Daten signifikanter sind als die älteren Daten und einen größeren Einfluss auf das Endergebnis haben sollten. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seither zur Erfindung von verschiedenen Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Lesungen siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller bewegter Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art gleitender Durchschnitt, der den jüngsten Preisen mehr Gewicht verleiht, um es besser zu machen Zu neuen Informationen. Lernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Charting-Pakete die Berechnungen für Sie machen. Jedoch für Sie Mathe-Aussenseiter da draußen, hier ist die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als vorherige EMA verwendet werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel von dort weiter fortfährt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die reale Beispiele enthält, wie man sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnet. Der Unterschied zwischen EMA und SMA Nun, da Sie ein besseres Verständnis davon haben, wie die SMA und die EMA berechnet werden, können Sie sich einen Blick darauf werfen, wie sich diese Durchschnittswerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gesetzt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 ist die Anzahl der in jedem Durchschnitt verwendeten Zeiträume identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu nutzen. Was sind die verschiedenen Tage Mittleren Durchlauf-Durchschnitten sind ein völlig anpassbarer Indikator, was bedeutet, dass der Benutzer frei wählen kann, was Zeitrahmen sie beim Erstellen des Durchschnitts wollen. Die häufigsten Zeiträume, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne ist, um den Durchschnitt zu schaffen, desto empfindlicher wird es Preisänderungen. Je länger die Zeitspanne, desto weniger empfindlich oder mehr geglättet wird, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen, um bei der Einrichtung Ihrer gleitenden Durchschnitte zu verwenden. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist, mit einer Reihe von verschiedenen Zeiträumen zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Umzugsdurchschnitte: Wie man sie benutzt

No comments:

Post a Comment